

### Data sheet

#### **ME05**

### Pressure transducer

### **Applications**

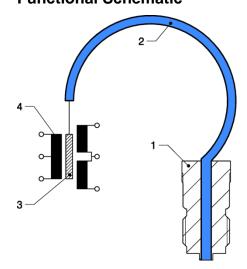
The pressure transducer ME05 is used to measure the process variable 'pressure' in industrial process measurement technology.

### Important features

- highly corrosion-resistant
- sturdy wear-resistant measuring unit
- can also be used in aggressive media

### Design and mode of operation

The pressure transducer ME05 has a modular design. It basically comprises the measuring system and the electronics which consist of the power supply unit, amplifier and control board.


The measuring system and electronics are installed in the same housing. The housing is divided with a separator. The electronics control panel can be accessed by unscrewing the lid of the housing.

Over-pressure in the Bourdon tube causes a proportional deflection that is also executed by the transfer core attached to the end of the Bourdon tube.

This pressure-proportional movement creates a change of voltage in the inductive pickup system. The downstream electronics convert the voltage change into a direct current signal.



#### **Functional Schematic**



- 1 Process connection
- 2 Bourdon tube
- 3 Transfer core
- 4 Inductive pickup





#### **Technical data**

| Measuring ranges | bar | bar  | bar  | bar | bar | bar | bar | bar | bar | bar    | bar  | bar  | bar  |  |  |
|------------------|-----|------|------|-----|-----|-----|-----|-----|-----|--------|------|------|------|--|--|
|                  | 01  | 9.10 | 02.5 | 64  | 90  | 010 | 016 | 025 | 070 | 09***0 | 0010 | 0910 | 0250 |  |  |

#### **General points**

Measuring principle
Measuring media

Bourdon tube measuring element with an inductive pickup system (see function chart)

g media Gases, vapours, fluids

Overload limit

1.5 x upper range value (momentary)

Measuring ranges Measuring span 0 ... 1.0 bar to 0 ... 250 bar (customer-specific measuring ranges are possible \*)

Can be set steplessly from 20% ... 100% of the max. measuring range

Measuring start Can

Can be set steplessly from 0% to 100% of the measuring range

when the characteristic curve falls (switchable) can be set steplessly from 100% to 0% of the

measuring range

#### **Ambient conditions**

Ambient temperature:

-10 °C ... +70 °C

Storage temperature

-25 °C ... +80 °C

Electromagnetic compatibility

≤95% annual mean value, moisture condensation permissible DIN EN 61000-6-2 (interference resistance in the industrial field) DIN EN 61000-6-4 (emitted interference in the industrial field)

#### Electrical data

Technology

Humidity

Analogue

Electrical connection type

4-conductor, electrically isolated

Auxiliary energy

24V DC +50 % / -25 % 5 W

Output signal

0/4 ... 20 mA

Test socket

Checking the output signal

Admissible resistance

0 ... 750 Ohm

Characteristic curve

Linear, rising or falling (switchable)

Rising time (damping module)

0.3; 0.6; 1.0; 1.5; 3; 5 and 10s (pluggable)



# Technical data (cont'd)

Housing

IP65

Compact design

Device structure
Housing (amplifier housing)
Protection class as per EN 60 529/IEC

Copper-free aluminium (AIMgSiPb)

529 Assembly type

Wall and pipe mounting, material 1.4301 (AISI 304)

Nominal position, installation position

Vertical, amplifier in front position

colour

2K-epoxy coloured paint RAL 5021 silk-gloss

Materials that come into contact with the measuring media

Measuring element Process connection Bourdon tube chromium nickel steel 1.4404 (AISI 316L) Chromium nickel steel 1.4571 (AISI 316Ti)

**Ports** 

Device connection Process connection Plug / plug connection Harting HAN 7D G1/2" B outer thread vertical downwards, DIN EN 837

Weight

Differential pressure transducer
Assembly parts

≤ 2.2 kg

≤ 0.6 kg (wall mount)



## Technical data (cont'd)

Error tolerances according to DIN EN 60770

Characteristic curve conformity<sup>1</sup>

characteristic curve

Measurement deviation

(Non-linearity, hysteresis, non-repetitive)

Non-linearity/noncompliance

Hysteresis

Non-repetitive

≤ 0.75 %

≤ 0.4 % ≤ 0.4 %

≤ 0.3 %

Temperature influence1

on the zero-point

≤ 0.2 % / 10 K

on the measuring span

 $\leq$  0.2 % / 10 K

Impact of range overstepping by 50% of the measuring range on the zero-point in both

directions1

≤ 0.01% / V

on the zero-point on the measuring span ≤ 0.2 %

≤ 0.2 %

**Electrical influences** 

Power supply influence

Output load influence

≤ 0.01 % / 100 Ohm

Output ripple

≤ 3 % ≤ 0.1 %

Grounding influence Energy input

≤ 5 W

Insulation resistance

> 1 MΩ

Withstand voltage

≤ 500 V AC

Jump response

Without attenuation module

Time constants (0...63 %): < 0.4 s

Rising time (0...90 %): < 0.6 s

Other influences1

Long-term stability (long-term drift)

Behaviour in case of system-related pressure oscillations

(at a max. amplitude of ±10 % FS and a frequency of 10 ... 80 Hz)

≤ 0.2% every six months

The constant component of the output signal is not impacted on impermissibly by the

superimposed pressure oscillations.

Position dependency for ±10 °1

All measuring ranges

< 0.15 %

<sup>&</sup>lt;sup>1</sup> All deviations do not refer to the non-spread measuring range. These deviations increase proportionally to the set spread.



## Technical data (cont'd)

for the scope, power station KTA 3505'

#### Design 'K'

Product qualification Area of application

Safety-relevant classification

Manufacturer qualification

Assembly type

allowed deviation during mechanical load in compliance with KTA3505 Sec.

in compliance with KTA 3505

Reactor protection system "KMV incident - ring room leak 1"

according to DIN IEC 61226 in category A

KTA 1401

Assembly in compliance with operating equipment installation plan

≤ 3% <sup>2</sup>

Test was carried out in compliance with the operating equipment installation plan ME05 (09.005.00.35146.3)

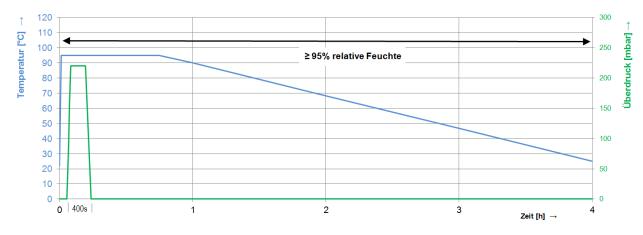
#### Measurement deviation for KMV incident loss of coolant<sup>3</sup>

Behaviour in case of pressure, temperature and moisture stress in the transient range

Behaviour in case of pressure, temperature and moisture stress in the stationary range

Measuring deviation after pressure, temperature and moisture load

Behaviour in case of radiation load


≤ 8 % <sup>4</sup>

≤ 5 % <sup>5</sup>

≤2%

 $\leq 5\%^6$ 

## Unique allowed incident load



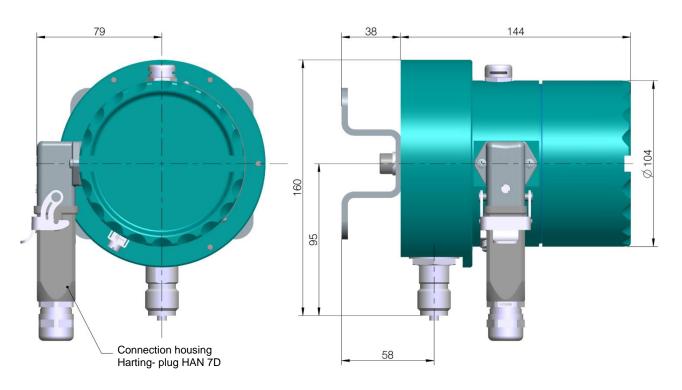
Page 5 of 8

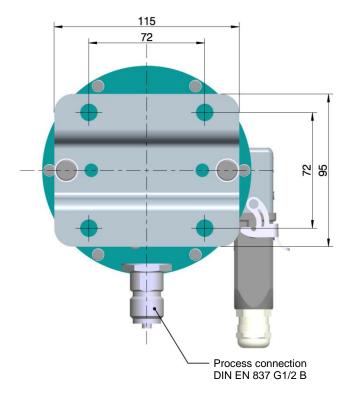
<sup>&</sup>lt;sup>2</sup> Deviation after the load: see information under measuring deviation page 4

<sup>&</sup>lt;sup>3</sup> All deviations do not refer to the non-spread measuring range. These deviations increase proportionally to the set spread.

<sup>&</sup>lt;sup>4</sup> Maximum deviation in the transient range during fast temperature change like at the start of the incident load or under great ambient pressure changes through to pressure equalisation in the housing

<sup>&</sup>lt;sup>5</sup> Maximum deviation in the stationary range after the measuring system has stabilised during the incident load.


 $<sup>^{6}</sup>$  Behaviour in case of a dosing output 5Gy/h <  $\dot{D}$  ≤ 25 Gy/h up to a total dose of 1000 kGy.




# **Dimensional drawings**

(all dimensions in mm unless otherwise specified)

Process connection design below







#### **Order Codes**



Page 7 of 8



The page has been left empty



\*09005339\* DB\_EN\_ME05 Rev.H 08/15