

Instrucciones de servicio

DE44

Interruptor / transmisor

de presión diferencial digital de dos canales

Índice del contenido

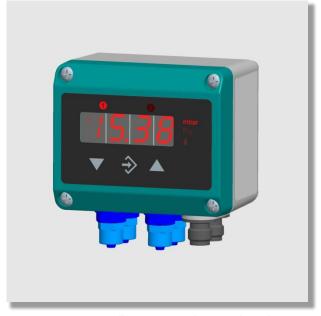
- Indicaciones de seguridad 1
- 2 Finalidad de uso
- 3 Descripción del producto y del funcionamiento
- 4 Instalación y montaje
- 5 Puesta en servicio
- 6 Mantenimiento
- 7 Transporte
- 8 Servicio
- 9 Accesorios
- 10 Eliminación
- Datos técnicos 11
- Esquemas de dimensiones 12
- 13 Identificación de pedido
- Certificación de conformidad

1 Indicaciones de seguridad

Generalidades

Estas instrucciones de servicio contienen indicaciones fundamentales y a ser observadas imprescindiblemente para la instalación, servicio y mantenimiento

del aparato. Estas deben ser leídas imprescindiblemente antes del montaje y la puesta en servicio del aparato, por el montador, el gestionador así como para por el personal técnico responsable.


Estas instrucciones de servicio son parte integrante del producto y por esta razón deben ser conservadas en inmediata cercanía del aparato y accesibles en todo momento para el personal técnico responsable.

Las siguientes secciones, en especial las instrucciones para el montaje, puesta en servicio y mantenimiento contienen indicaciones importantes de seguridad cuya inobservancia puede acarrear peligros para personas, animales, medio ambiente y objetos.

1.2 Cualificación del personal

El aparato sólo puede ser montado y puesto en servicio por personal técnico familiarizado con el montaje, puesta en servicio y servicio de este pro-

El personal técnico son personas que en función de su formación profesional, sus conocimientos y experiencia, así como de los conocimientos de las

normas correspondientes, pueden evaluar los trabajos que les han sido encomendados y reconocer posibles peligros.

Peligros ante inobservancia de las indicaciones de seguridad

Una inobservancia de estas indicaciones de seguridad, de la finalidad de aplicación prevista o de los valores límite para el empleo indicados en los datos técnicos del aparato, puede conducir a peligros o daños de personas, el medio ambiente o la instalación.

En este caso se descartan los derechos por daños y perjuicios con relación al fabricante.

Indicaciones de seguridad para gestionador y operador

Se deben observar las indicaciones de seguridad para el servicio reglamentario del aparato. Estas deben ser puestas a disposición del personal correspondiente para montaje, mantenimiento e inspección por parte del gestionador.

Se tienen que descartar peligros por energía eléctrica así como energía liberada del medio, por fugas de medios así como por conexión inapropiada del aparato. Los detalles para ello deben ser extraídos de las literaturas de normativas nacionales o bien internacionales adecuadas correspondientes.

En Alemania estas son DIN EN, UVV así como los casos de aplicación referidos al ramo, las directrices DVWG, Ex, GL, etc. VDE, así como las reglamentaciones de la empresa suministradora de corriente local.

1.5 Reformas inadmisibles

Reformas u otras modificaciones técnicas del aparato por parte del cliente, no son admisibles. Esto vale también para el montaje de recambios. Eventuales reformas/modificaciones se ejecutan exclusivamente por parte de Fischer Mess- und Regeltechnik GmbH.

1.6 Modos de servicio inadmisibles

La seguridad de servicio del aparato sólo está garantizada con el uso conforme al empleo previsto. La ejecución del aparato tiene que estar adaptada al medio empleado en la instalación. No se pueden sobrepasar los valores límite, indicados en los datos técnicos.

1.7 Trabajo con conciencia de seguridad durante el montaje y mantenimiento

Se deben observar las indicaciones de seguridad que se encuentran en estas instrucciones de servicio, las normas nacionales existentes para la prevención de accidentes y las normas internas de trabajo, servicio y de seguridad del gestionador.

El gestionador es el responsable, que todos los trabajos de montaje, inspección y mantenimiento prescritos, sean ejecutados por personal técnico calificado y autorizado.

1.8 Aclaración de símbolos

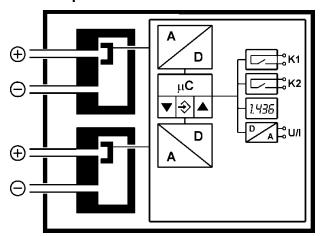
¡ADVERTENCIA!

... indica una situación posiblemente peligrosa, cuya inobservancia puede ocasionar peligros para humanos, animales, medio ambiente e inmuebles.

iINFORMACIÓN!

...resalta informaciones importantes para un servicio eficiente y exento de averías.

iSUGERENCIA!


...resalta recomendaciones útiles que no son imprescindiblemente necesarias para el servicio pero pueden ser de utilidad ante determinadas situaciones.

2 Finalidad de uso

Dispositivo de indicación y conmutación para presión diferencial en medios gaseosos. El dispositivo debe ser empleado exclusivamente para los casos de aplicación coordinados entre el fabricante y el usuario.

3 Descripción del producto y del funcionamiento

3.1 Esquema de funciones

3.2 Estructura y modo de funcionamiento

La base de este dispositivo son dos elementos sensores piezoresistivos que se adaptan para mediciones de sobrepresión, subpresión y presión diferencial. Las presiones a ser comparadas actúan directamente sobre membranas de silicio equipadas con resistores piezoresistivos. En caso de igualdad de presión las membranas de medición se encuentran en posición de reposo. En caso de una diferencia de presión se genera una fuerza en las membranas que provoca un descentramiento en dirección de la presión más reducida. Este descentramiento genera una modificación de resistencia que se evalúa y convierte en indicación, contacto de conmutación y señal de salida a través de la electrónica integrada en el dispositivo.

La electrónica evalúa separadamente ambas señales de sensor. La señal del primer sensor influye sobre la salida de conmutación 1 y la señal de salida opcional, la señal del segundo sensor actúa solamente sobre la salida de conmutación 2.

4 Instalación y montaje

El dispositivo está previsto para su instalación sobre placas de montaje niveladas. El dispositivo posee cuatro perforaciones de montaje posteriores para atornillar con la placa de montaje con tornillos de $\emptyset 3,5$ mm.

Opcionalmente, el dispositivo puede ser suministrado con una placa de montaje mural (v. 13. Identificación de pedido).

El dispositivo está ajustado de fábrica para una posición de montaje vertical, esta sin embargo es opcional. En posiciones de montaje que se desvíen de la vertical, la señal de punto cero puede ser corregida a través de la regulación de punto cero incorporada (véase 5.3.3.).

El tipo de protección de la carcasa IP65 solo está garantizada cuando se emplean los conductores de conexión apropiados.

Cuando el dispositivo está previsto para una aplicación exterior, recomendamos para la protección duradera del teclado de membrana contra los rayos UV y como medida de protección contra lluvias continuas y nevadas el empleo de una carcasa de protección apropiada, como mínimo sin embargo el empleo de un tejado de protección suficientemente grande.

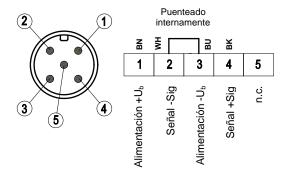
4.1 Conexión de proceso

- Sólo por personal técnico cualificado y autorizado.
- Al conectar el aparato las tuberías deben estar despresurizadas.
- El aparato debe ser protegido contra golpes de ariete mediante medidas adecuadas.
- Observar la adecuación del aparato para los medios a ser medidos.
- Antes de la puesta en servicio se debe verificar la hermeticidad de las tuberías de conexión de presión.
- Observar las presiones máximas.
- No soplar dentro de las conexiones de presión.

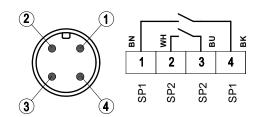
Las conexiones de presión están identificadas en el aparato con símbolos (+) y (-). En mediciones de presión diferencial, la presión mayor se conecta en el lado (+) y la presión menor en el lado (-) del dispositivo.

Los conductores de medición de presión deben ser tendidos con pendiente, de manera que p.ej. en caso de medición de líquidos no se puedan presentar bolsas de aire y en mediciones de gases ningún embalsamiento de agua. Si la pendiente necesaria no se alcanza, se deben montar separadores de aire y de agua en puntos adecuados.

Las tuberías de medición de presión deben tenderse en lo posible cortas y sin acodamientos bruscos, para evitar la presencia de tiempos de retardo anómalos.


Cuando durante la puesta en servicio las tuberías de medición ya están presurizadas, no se puede realizar ninguna comprobación y ajuste del punto cero.

En estos casos el dispositivo se debe conectar de momento sin tubería de medición de presión, solo eléctricamente.


4.2 Conexión eléctrica

- Sólo por personal técnico cualificado y autorizado.
- La conexión eléctrica del aparato debe ser ejecutada de acuerdo a las normas relevantes de VDE así como las normas de la empresa suministradora de corriente.
- Previo a la conexión eléctrica, desconectar la instalación.
- Conectar previamente fusibles adecuados al consumo.

Conector 1: Alimentación y señal de salida

Conector 2: Salidas de conmutación

La tensión de alimentación nominal y el rango admisible están indicados en los datos técnicos.

La carga/carga aparente para la señal de salida está indicada en los datos técnicos.

La conexión "masa de señal" está conectada internamente con la masa de alimentación. Esta sirve sólo como conexión a masa para la señal de salida. De este modo la señal de salida está liberada de niveles de interferencia sobre los conductores de alimentación.

5 Puesta en servicio

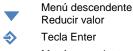
Condición para la puesta en servicio es la instalación reglamentaria de todos los conductores eléctricos de alimentación y medición. Todos los conductores de conexión deben estar tendidos de tal manera que no actúe sobre el dispositivo ninguna fuerza mecánica.

Antes de la puesta en servicio se debe verificar la hermeticidad de las tuberías de conexión de presión.

5.1 Indicación

- La indicación LED de 3½ dígitos representa en servicio normal la presión diferencial actual.
- A la derecha de la indicación se retroilumina la unidad de medición seleccionada.

Las unidades representadas en la figura pueden desviarse de las ejecuciones efectivas.


- Sobre la indicación, dos diodos luminosos ① y
 ② simbolizan el estado de las salidas de conmutación. En el momento en que el interruptor está cerrado, se enciende el LED correspondiente.
- Sobre el lado izquierdo se indica a través de P1 o bien P2 qué canal aparece en ese momento en el display.

Durante la parametrización se muestra sobre la indicación bien el punto de menú correspondiente o el valor de parámetro perteneciente a este. El dispositivo continúa trabajando durante la parametrización, por esta razón las modificaciones se activan inmediatamente con dos excepciones.

Las excepciones son por un lado una modificación de los tiempos de conmutación; aquí debe primero haberse agotado el tiempo válido anterior, y por el otro, una modificación de la tabla de puntos de apoyo (v. 5.3.8 o bien 5.3.9). Aquí se congelan todas las señales de salida hasta que las modificaciones hayan concluido.

5.2 Teclas de manejo

Las teclas de manejo tienen las siguientes funciones:

Menú ascendente Aumentar valor

5.3 Configuración

Durante la puesta en servicio existen un sinnúmero de posibilidades de configuración para adaptar el dispositivo de forma óptima al punto y tarea de medición. Este capítulo reproduce paso a paso estas posibilidades.

Según la ejecución de aparato¹ presente, algunos puntos de menú no están disponibles. De este modo p.ej. todas las funciones de curvas características del menú están ocultas cuando el dispositivo no tiene salida de señal.

La configuración completa del dispositivo puede ser realizada de forma confortable en el PC mediante un adaptador PC. Allí son visibles y están accesibles

inmediatamente todos los parámetros. Además se puede cargar, guardar y documentar como impresión de control, la configuración completa. Otras indicaciones sobre este programa las encontrará en la documentación específica para el mismo (ver Accesorios).

5.3.1 Generalidades

Ponga el dispositivo eléctricamente en servicio y asegúrese de que el mismo de momento esté despresurizado (en caso dado desconectar las tuberías de conexión de presión)

Para establecer un parámetro, proceda de la siguiente manera:

- Utilice las teclas de flecha ▼ ▲ para seleccionar un parámetro de la lista.
- Accione la tecla Enter
 para llamar el parámetro.
- Utilice las teclas de flecha ▼ ▲ para ajustar el valor deseado.
- Accione la tecla Enter
 para guardar el valor.

Después de haber establecido todos los parámetros, abandone el menú como sigue:²

¹ con relación a la señal del transmisor, salida de tensión, salida de corriente, etc.

² Recién cuando abandona el menú a través del parámetro *ESL* los valores de parámetro configurados serán válidos.

- Ajuste con las teclas de flecha ▼ ▲ el parámetro ESC. Este lo encontrará tanto al inicio como al final de la lista de parámetros.
- Accione la tecla Enter para abandonar el menú.

Selección de la unidad de presión 5.3.2

Seleccione primero la unidad de medición de presión deseada. La unidad válida en ese momento se retroilumina a la derecha junto a la indicación de dígitos. Para el ajuste accione la tecla central > y busque a continuación con la tecla derecha A el parámetro E In. Accione nuevamente \diamond y modifique entonces el valor indicado con \(\times \) \(\neq \).

1 = Arriba

2 = Centro

3 = Abajo

Tras la selección guarde el valor con ♦ y aparece nuevamente E In en la indicación.

Para finalizar, abandone el modo de configuración. Oprima ▼ hasta que aparezca ESC y entonces ♦. Ahora se vuelve a representar la presión medida en ese momento. A la derecha debe estar retroiluminada la unidad de presión correcta.

El alcance de la indicación está restringido a ±1999. Por esta razón en casos individuales tampoco pueden ser seleccionadas todas las unidades de presión

especificadas.

Configuraciones del display 5.3.3

Debido a que el DE44 dispone de dos sistemas de medición de presión independientes, pero solo de una indicación, con el dSP puede seleccionar parámetros, se desea que se indiquen solo el primer canal (dSP = 0.0), solo el segundo canal (dSP = 0.1) o ambos canales alternados (d5P = 0,2 a 99,9). A partir de 0,2 s el valor determina simplemente la duración de permanencia (0,2 s hasta 99,9 s por canal). Para que pueda reconocerse qué valor se indica en ese momento, se activan en cada caso los símbolos P1 para el 1er. canal y P2 para el 2º en el borde izquierdo de la indicación.

Para las otras configuraciones es conveniente, de momento configurar un tiempo de conmutación lento (p.ej. 3 s). De esta manera se ahorra la conmuta-

ción manual entre P1 y P2.

5.3.4 Comprobación y ajuste del punto cero

Asegúrese de que el dispositivo esté despresurizado (en caso dado retirar las tuberías de conexión de presión).

Si ahora el dispositivo no indica exactamente cero, el parámetro oFI, le permite equilibrar el valor de medición exactamente a cero. Para ello debe ajustar el valor de medición indicado bajo of a cero.

Debido a que el DE44 contiene dos sistemas de medición de presión independientes, existe para el segundo canal de medición un parámetro de corrección offset FZ. La función y modo de funcionamiento es idéntico a oFI.

Tras la calibración del punto cero se pueden volver a conectar las tuberías de medición de presión.

Amortiguación y estabilización del pun-

Si ahora o durante el servicio resulta que la indicación de presión es inestable, puede estabilizar la indicación (y la señal de salida) con los parámetros dRN y nP.

El parámetro de su efecto a un choque capilar. Este actúa sin embargo solamente sobre la indicación, señal de salida y puntos de conmutación, sin embargo no sobre la celda de medición. Con este parámetro puede configurar el tiempo de reacción a los saltos de presión. El rango de valores alcanza de 0,0 s hasta 100,0 s.

Con la amortiguación máxima se tarda más de 2 minutos hasta que un salto de presión de la presión nominal (100%) a cero también muestre la indicación

cero.

En muchos casos una indicación inestable no interfiere en el servicio normal, excepto en estado de reposo, o sea cuando se espera una presión (diferencial) desde cero.

Exactamente para ello sirve el parámetro nP. Su valor define un rango de valor de medición alrededor de cero. Dentro de ese rango el valor de medición se establece en cero.

🗥 Ejemplo:

Para nP está registrado un valor de 0,08 mbar3. En este caso todas las presiones que se encuentran dentro del rango de -0,08 mbar hasta 0,08 mbar, pasan a cero. Recién cuando la presión sobrepasa estos límites, la indicación no se emite más como cero. Valor de presión e indicación sin embargo no coinciden al cien por ciento. Recién a partir del valor doble o sea a partir de 0,16 mbar la presión de medición y la indicación vuelven a coincidir.

5.3.6 Configuración de la señal de salida

La señal de salida del transmisor depende primeramente de la presión medida. Sin embargo tiene la posibilidad de adaptar la señal de salida en amplios rangos a sus necesidades.

Sin embargo, son inalterables el rango de medición básico (ver placa de características) y el tipo de señal de salida (tensión o bien corriente).

³ 0,08 mbar ≙ 8 Pa

Los parámetros (MessbereichAnfang=Inicio de rango de medición) y ne (MessbereichEnde=Fin de rango de medición) determinan los límites en los que la señal de salida siquiera puede modificarse. Ambos valores son ajustables a través del rango de medición básico total. Los valores configurados se refieren siempre a presiones en la unidad de presión válida en cada caso y ante una modificación de la unidad, también se convierten.

Los valores de señal asignados para MR y NE no son modificables (ver placa de características, p.ej. 0...10 V o 4...20 mA).

Si modifica los parámetros NR y/o NE, se borra una tabla de punto de apoyo eventualmente activa (véase 5.3.8 o bien 5.3.9).

Cuando MR < es < ME, se habla de una curva característica ascendente. La señal de salida se incrementa con el aumento de presión.

Cuando MR es > ME, se habla de una curva característica descendente; la señal de salida desciende con el aumento de presión.

La diferencia de ambos valores, NR y NE, debe ser como mínimo de 25% del rango de medición básico. El dispositivo no permite una separación mayor. En caso de indicaciones de rango erróneas, no puede abandonar el menú.

Ejemplo:

En un rango de medición básico de 400 Pa debe valer entonces: $nE - nR \ge 100 \text{ Pa}$.

5.3.7 Límites de señal de salida (Namur)

Los tres parámetros oGI, oG2 y oEr determinan independientemente de la presión, los valores límite para tensiones o bien corrientes de salida que no pueden ser sobrepasados o encontrarse por debajo.

Estos valores límite tienen prioridad ante el rango determinado por NR y NE. Estos sirven principalmente para atenuar mensajes de error en instalaciones conectadas a continuación debidos a sobrepasos de rango de medición por corto tiempo.

Con el parámetro obl se determina el valor límite para la señal de salida mínima. La señal de salida no puede estar por debajo de este valor. Por regla general este parámetro sólo es conveniente para dispositivos con una señal de salida de 4..20 mA, debido a que en estos dispositivos frecuentemente un valor por debajo de 3,8 mA se evalúa como una señal de error.

Con el parámetro o se determina el valor límite para la señal de salida máxima. La señal de salida no puede sobrepasar este valor. Este parámetro puede ser empleado para todas las salidas (tensión y corriente), para limitar el valor máximo a p.ej. 10,2 ٧.

Con el parámetro o er se determina el valor para la señal de error. El valor especificado con oEr se emite como señal de salida cuando el dispositivo detecta un error interno y ya no puede trabajar correctamente. No obstante no todos los posibles errores y defectos realmente son detectables por el dispositivo.

Si establece oGI = oGC = 0, la señal de salida no se comprueba más a límites.

Si configura oll al valor máximo (11 V o bien 21 mA), puede regular con occ la señal de salida, independientemente de

la presión, a su voluntad, a voluntad de cero hasta el valor máximo. No es necesario abandonar el punto de menú, la salida sigue inmediatamente. En este caso usted opera el dispositivo como emisor de señales y con este puede comprobar sencillamente los otros procesamientos de señales.

5.3.8 Función de curvas características F

Para determinadas aplicaciones la medición de presión solo es una medida indirecta para la magnitud de medición efectiva. Medición de caudal a través de un diafragma o determinación de nivel de llenado a través de medición de presión hidrostática son dos ejemplos típicos de ello. En estos casos puede ser deseable modificar la señal de salida del transmisor a través de una curva característica nolineal de tal manera que las siguientes evaluaciones reciban una señal proporcional a la magnitud de medición efectiva (p.ej. volumen en m³ o caudal volumétrico en cm³/s, etc.)

El parámetro F le permite seleccionar entre las siguientes variantes:

0 Curva característica lineal (estándar) Curva característica de raíz cuadrada

1 Tanque cilíndrico horizontal 2 3...30 Tabla de puntos de apoyo con 3 a 30 pares de valores

Siempre que modifique el valor de F, el programa crea una tabla nueva. Todos los valores anteriores de la tabla se descartan y se sustituyen por entradas lineales nuevas.

Las tablas del tipo F = 0 hasta F = 2 no son visibles. Aquí se emplean valores internos para el cálculo de la tabla. Estos valores no son modificables.

Estos tienen con F = 3...30 solo influencia sobre los valores intermedios 1...28. Solo tiene acceso al valor inicial y final a través de los parámetros NR y NE (véase 5.3.6).

En caso de modificaciones de los parámetros NR y NE, la tabla se borra y se establece F = 0.

En el inicio del rango de medición (na) se emite el 0% de la señal de salida (p.ej. 0 mA).

En el final del rango de medición (*IIE*) se emite el 100% de la señal de salida (p.ej. 20 mA).

5.3.9 Entrada al menú Lin

Cuando el valor de F es mayor o igual a 3, existe un submenú L_{IR} . Aquí puede acceder a todos los valores de la tabla excepto el inicio (ΠR) y el final (ΠE) de la tabla.

Este submenú tiene un punto de entrada y de salida propio que se representa con *End*. La tabla recién se guarda cuando en este punto cambia nuevamente al menú principal, o sea cuando lo hace con la tecla nuevamente al parámetro *Lin*.

En caso de que la tabla no esté correctamente estructurada, aparece en este punto un mensaje de error *Err* y no puede abandonar el submenú.

La tabla está constituida por 3...30 pares de valores. En un dispositivo con salida de corriente este primer par de valores es {\int 0||P0|\}^4. El primer valor \int 0| determina la altura de la señal de salida. El segundo valor \int 0| determina a qué presión se debe emitir la señal de salida.

A continuación siguen los pares de valores $\{102|P02\}$... $\{130|P30\}$.

La introducción o modificación de los valores de la tabla a través del teclado de membrana es muy laboriosa y cargada de errores. Solo está pensada como una solución de emergencia en caso de que el acceso al adaptador PC no sea posible.

La tabla está correcta cuando para todos los valores de señales vale: el valor es mayor que el valor anterior. Para los valores de presión vale adecuadamente, ya sea mayor (curva característica ascendente) o menor (curva característica descendente). Una transición de curva característica ascendente a descendente o viceversa no está permitida.

5.3.10 Puntos de conmutación

Ambas salidas de conmutación ① ② se configuran en cada caso por cuatro parámetros.

La función de la salida de conmutación ① está determinada por los parámetros c/R, c/E, c/d y c/F.

La función de la salida de conmutación ② está determinada por los parámetros c2R, c2E, c2d y c2F.

rIR determina el punto de desconexión, rIE determina el punto de conexión de la salida de conmutación 1. Los valores se ajustan en la unidad de medida válida (se indica a la derecha).

Juntos determinan ambos parámetros rIR y rIE las funciones de conmutación de la salida de conmutación 1:

Cuando rIR es menor que rIE, la salida se conecta cuando el valor de medición sobrepasa rIE. Recién se desconecta, cuando se está por debajo del valor de medición rIR (función de histéresis).

Cuando rIR y rIE son iguales, la salida se conecta cuando se sobrepasa el valor de medición rIE y se desconecta cuando se está por debajo del valor de medición rIR.

Cuando rIR es mayor que rIE, la salida se conecta, cuando vale rIE < valor de medición < rIR (función de ventana).

Ambos parámetros pueden ser configurados independientemente sobre el rango de medición completo.

Cuando se conmuta la unidad de medición, los puntos de conmutación se convierten adecuadamente. En este caso los errores de redondeo pueden ocasionar desviaciones en el último dígito.

rld permite retardar la reacción de la salida de conmutación 1 en 0,0 hasta 100,0 s. Este valor vale del mismo modo para la conexión y la desconexión.

rIF invierte la función de la salida de conmutación. Cuando el valor = 1 la salida de conmutación trabaja como cierre (NO), si el valor = 2, la salida de conmutación trabaja como ruptor (NC).

5.3.11 Contraseña

El último punto de menú -P- sirve para la introducción de una contraseña. Como contraseña se puede seleccionar un valor de 001 a 999. El valor 000 deja la función de contraseña fuera de servicio.

Cuando se ha asignado una contraseña, aparece tras *ESC* y ♦ el texto *PRS* y debe introducir con ♦ y ▲, ▼ el valor correcto. Sólo entonces tendrá acceso a todos los otros puntos del menú. En caso de error la indicación salta de vuelta al inicio del menú *ESC*.

Una contraseña olvidada sólo puede ser borrada nuevamente por el fabricante o ser sobrescrita con el adaptador PC.

5.3.12 Opciones de display

El parámetro d0 permite estabilizar la indicación cuando el valor de medición oscila intensamente. Esta función de filtro es similar a la función dRII, sin embargo solo actúa sobre la indicación, no sobre la señal de salida. Con d0 = -1 solo se excitan los LEDs de punto de conmutación. Con d0 = -2 estos se desconectan.

5.3.13 Resetear a valores estándar

La función rE5 permite resetear todas las configuraciones a los valores estándar. Los valores estándar sólo pueden ser especificados a través del interfaz PC.

⁴ En una salida de tensión {*ωθ|Pθ|*} ... {*ω30|P30*}.

5.3.14 Unidad libre

En caso que el dispositivo esté dimensionado para una tercera unidad "libre" (símbolo de membrana:

◆), se puede escalar la indicación a voluntad con los parámetros ∩AF, ∩EF y dPF.

El rango de medición determinado por los parámetros ΠR y ΠE se convierte a $\Pi R F$ y $\Pi E F$. En este caso también se considera la función de las tablas (F). El valor de dPF determina la posición de un punto decimal.

5.4 Sinopsis de parámetros

Tras la conexión, el dispositivo muestra brevemente el número de versión de software y pasa entonces al modo de servicio normal. Accionando la tecla central ❖ del teclado de membrana se llama el menú de parámetros. En la indicación aparece el texto ESC. Accionando la tecla derecha ▲ se puede seleccionar sucesivamente los parámetros indicados a continuación:

Nota:

Según la ejecución del dispositivo, algunos parámetros individuales no están disponibles cuando este no dispone de esta característica.

PRS Introducción de contraseña

(aparece solo con contraseña activa), rango de valor 000...999 000 = desactivada

⊿₽∏ Amortiguación

(Tiempo de respuesta de salto T₉₀), rango de valores 0,0...100,0s

d☐ Amortiguación de display

Rango de valores -2...0...100.

- -2 = Display desconectado, LED Pto.conmut. off
- -1 = Display off, LED Pto.conmut. on
- 0 = Display on, LED Pto.conmut. on
- 1...100 Amortiguación de display

r/R Punto de desconexión

de salida de conmutación ①

r IE Punto de conexión

de salida de conmutación ①

rld Retardo de conmutación

de salida de conmutación ① rango de valores 0,0 hasta 100,0s. Este valor vale del mismo modo para la conexión y la desconexión.

Función de conmutación

de salida de conmutación ① rango de valores 1,2

- 1 = salida de conmutación como cierre (NO).
- 2 = salida de conmutación como ruptor (NC).

r2R Punto de desconexión

de salida de conmutación ②

Punto de conexión

de salida de conmutación ②

Retardo de conmutación

de salida de conmutación ② rango de valores 0,0 hasta 100,0s. Este valor vale del mismo modo para la conexión y la desconexión.

Función de conmutación

de salida de conmutación ② rango de valores 1,2 1 = salida de conmutación como cierre (NO), 2 = salida de conmutación como ruptor (NC).

E In Unidad de rango de medición

Rango de medición 1,2,3 La selección se retroilumina a la derecha junto a la indicación. No todos los rangos de medición básicos permiten una conmutación arbitraria. La correspondiente magnitud de unidad entonces solo puede ser seleccionada cuando el rango de medición básico del dispositivo es representable convenientemente.

Inicio de rango de medición

Se configura el valor de medición, en el que la señal de salida se torna mínima.

(p.ej.: 0V, 0mA o 4mA).

ΠΕ Final de rango de medición

Se configura el valor de medición, en el que la señal de salida se torna máxima.

(p.ej.: 10 V o 20 mA).

Rango de valores 0 hasta ½ del rango de medición básico. El valor actúa simétrico alrededor del punto cero verdadero.

dPF Unidad libre

Posición de punto decimal

NAF Unidad libre

Inicio de rango de medición (indicación)

NEF Unidad libre

Final de rango de medición (indicación)

 Corrección de offset Entrada de medición 1

Rango de medición -1/3 FS...0... +1/3 FS

Función de curva característica

Rango de valores 0...30

0 = lineal,

1 = raíz cuadrada,

2 = tanque cilíndrico horizontal

3..30 = Tabla

Lin Entrada de menú

Submenú de edición de tabla Cuando F < 3, este punto de menú es-

tá oculto.

Valor límite

Señal de salida mínima

oG2 Valor límite

Señal de salida máxima

Señal de error

(Señal de salida en caso de error)

rES Resetear

Todos los parámetros a los valores estándar (especificación de los valores

estándar por PC)

-P- Configuración de contraseña

Rango de valores 000 a 999 El valor 000 significa sin protección por contraseña.

6 Mantenimiento

El aparato está exento de mantenimiento.

Para asegurar un servicio fiable y una vida útil prolongada del dispositivo, recomendamos una comprobación regular del dispositivo como:

- · Comprobación de la indicación
- Comprobación de la función de conmutación en combinación con los componentes siguientes.
- Control de la hermeticidad de las tuberías de conexión de presión.
- Control de la conexión eléctrica (conexiones de bornes de los cables)

Los ciclos exactos de comprobación deben ser adaptados a las condiciones de servicio y del entorno. En caso de acción combinada de diferentes componentes de aparatos también se deben observar las instrucciones de servicio de todos los demás aparatos.

7 Transporte

El instrumento de medición debe ser protegido contra el efecto de golpes intensos. El transporte debe ser realizado exclusivamente en el embalaje previsto para el transporte.

8 Servicio

Todos los aparatos defectuosos con deficiencias deben ser enviados directamente a nuestro departamento de reparaciones. Por ello pedimos coordinar todas las devoluciones de aparatos con nuestro departamento de ventas.

Restos de productos de medición en y fuera de instrumentos de medición desmontados pueden conducir a peligros de personas, medio ambiente e instalacio-

nes. Se deben tomar medidas de precaución suficientes. En caso dado, los aparatos deben ser intensamente limpiados.

9 Accesorios

- Consultar por juegos de cables con conectores enchufables M12.
- Adaptador PC con software tipo EU03.F300

10 Eliminación

Por respeto al medio ambiente ...

Por favor, ayúdenos a proteger nuestro medio ambiente y elimine o bien recicle las piezas empleadas de acuerdo a las normas vigentes.

11 Datos técnicos

Rangos positivos (0 ...)

Zonas +/-

Rango básico de medición		mbar	4	6	10	16	25	40	60	100	±2,5	±4	±6	±10	±16	±25	±40	±60	±100
		Pa	400	600	1000	1600					±250								
		kPa			1	1,6	2,5	4	6	10				±1	±1,6	±2,5	±4	±6	
Presión de servicio estat. máx.		mbar	50		100		250		500		50		100		250		500		
Presión de reventamiento		mbar	15	150 300		00	750		15	500		150		300		750		1500	
Desviación curvas características°)	máx.	%FS	1,0						1,0										
	tipo	%FS	0,5						0,5										
Margen TK°°)	máx.	%FS/10K	1,	1,0				0,3			1,0	0,5		0,3					
	tipo	%FS/10K	0,3						0,3										
Punto cero TK°°)	máx.	%FS/10K	1.	1,0				0,4			1,0	0,5	0,4						
	tipo	%FS/10K	0,2							0,2									

: Desviación de curva característica (no-linealidad e histéresis) a 25°C, rango de medición básico (curva característica lineal, no extendida)

: Referido al rango de medición básico (no extendido), rango de compensación 0 ... 60°C

Generalidades

Temperatura ambiente admisible

Temperatura admisible de medios

Temperatura de almacenaje admisible

> Tipo de protección de la carcasa

-10 ... 70 °C

-10 ... 70 °C

-20 ... 70 °C

IP 65 según DIN EN 60529

Datos eléctricos

Tensión nominal Tensión de servicio admis. U_b Tipo de conexión electr.

Señal de salida

Carga admis.

Curva característica Consumo de potencia

Indicación

24 V CC / CA

Programable

12 ... 32 V CC / CA Tres conductores

Salida de corriente 0 ... 20 mA, 4 ... 20 mA

 $R_L \le (U_b - 4 V) / 0.02 A$ $(U_b \le 26V)$ R_L≤ 1100 Ω $(U_b > 26V)$ Salida de tensión 0 ... 10 V CC

 $R_L \ge 2 K\Omega$ $(U_b \ge 15V)$ R_L≥ 10 KΩ

Aprox. 2 W / VA LED de 31/2 dígitos

Contactos de conmutación

Contactos de relé

2 relés de contacto programables libres de potencial como cierre (NO) o ruptura (NC) $U_{max} = 32V$ CA/CC, $I_{max} = 2$ A, $P_{max} = 64$ W/VA

Interruptor de semiconductor

2 interruptores de semiconductor libres de potencial (MOSFET), SPST-NO/NC progr. U = 3 ... 32V CA/CC, I_{max} = 0,25A, P_{max} = 8 W/VA, R_{ON} ≤ 4 Ω

Conexiones

Conexión de proceso Conexión eléctrica Racor para mangueras de Al para 6/4 mm o 8/6 mm

2 x empalme de conector cilíndrico M12

Conector 1 para alimentación y señal de salida analógica (5 polos, macho)

Conector 2 para contactos de conmutación (4 polos, macho)

Materiales

Carcasa

Poliamida PA 6.6

En contacto con el medio

Silicio, PVC, aluminio, latón

Montaje

Perforaciones posteriores para la fijación sobre paneles de montaje

Adosado mural mediante placa de montaje

Cuando el dispositivo está previsto para una aplicación exterior recomendamos para la protección duradera del teclado de membrana contra los rayos UV y como medida de protección contra lluvias continuas y nevadas, el empleo de una carcasa de protección apropiada, como mínimo sin embargo el empleo de un tejado de protección suficientemente grande.

11.1 Programación

La programación se realiza a través del teclado de membrana con manejo guiado por menú; enclavable por contraseña.

Configuraciones

Amortiguación

 $0.0\dots 100.0$ s (Tiempo de respuesta de salto 10 / 90 %) para señal de salida, también separado para display

Selección del valor de medición indicado

medición 0,0 = Solo presión diferencial1 (dP1) indicado 0,1 = Solo presión diferencial1 (dP1)

indicado

0,2 ...25,5 = Tiempo de conmutación en segundos; dP1 y dP2 alternadamente (0)

Punto de desconexión, punto de conexión, tiempo de respuesta (0 ... 100 s), función (ruptor / cierre) (4)

Salida de conmutación 1 / 2

mbar / Pa / "Unidad libre", valor inicial, valor final y punto decimal para "Unidad libre"

Unidad de rango de medición Estabilización de punto cero Señal de salida

0 ... 1/3 del rango de medición básico ⁽¹⁾ De ajuste arbitrario dentro del rango de medición básico ^{(2) (4)}

Corrección de punto cero

± 1/3 del rango de medición básico (3)

Conversión de curva característica

lineal, raíz cuadrada, cilindro horizontal tanque, tabla con 3...30 puntos de apoyo

001 ... 999 (000 = sin protección por contraseña)

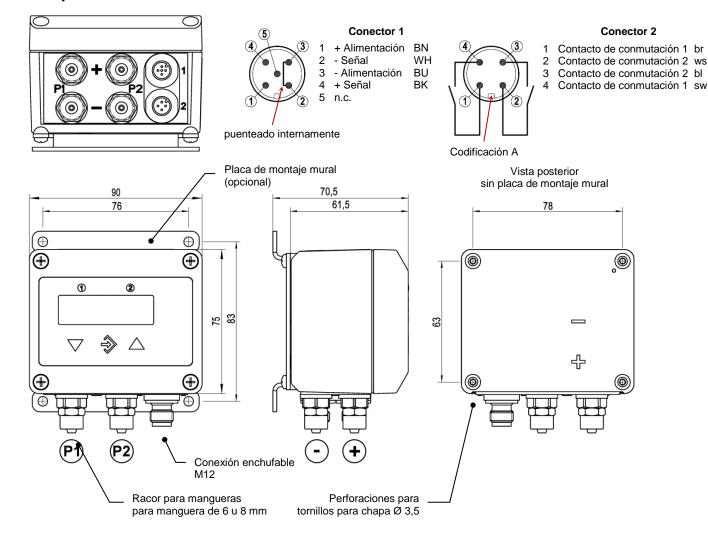
Observaciones:

(0): Con valores a partir de 0,2 la indicación conmuta rítmicamente entre dP1 y dP2.

(1): Valores de medición (alrededor de cero) se establecen en cero. (p.ej. supresión de cantidades lentas).

(2): Separación máxima efectiva 4:1. Solo se influencia la señal de salida.

Contraseña


De este modo también posibles curvas características descendentes, cuando inicio rango de medición > final rango de medición >

(3): Corrección de punto cero para compensación ante diferentes posiciones de montaje.

(4) Presión diferencia 1 (dP1) controla la salida de conmutación 1 y la señal de salida

Presión diferencial 2 (dP2) controla la salida de conmutación 2

12 Esquemas de dimensiones (todas las dimensiones en mm siempre que no se indique lo contrario)

Identificación de pedido

+4

kPa.....>

kPa.....>

Interruptor / transmisor de presión diferencial digital de dos canales con indicación LED de 3 $\frac{1}{2}$ dígitos

Κ **DE44** M 1 Canal 1 - Rango de medición 2 0 ... 4 mbar.....> 5 mbar.....> 3 10 mbar.....> 4 5 16 mbar.....> 25 mbar....> 6 40 mbar....> 0 ... 7 60 mbar....> 0 ... 8 0 ... 100 mbar....> 9 -2,5 ... +2,5 mbar.....> 6 mbar.....> 7 -6 ... +6 mbar.....> 8 -10 ... +10 mbar.....> 9 -16 ... +16 mbar....> 1 -25 ... +25 2 mbar....> -40 ... +40 mbar....> С 5 -60 ... +60 mbar....> 3 -100 ... +100 mbar....> 4 0 ... 400 Pa> 7 0 ... 600 Pa> 8 0 ... 1000 Pa> 9 0 ... 1600 Pa> Ε 1 -250 ... +250 Pa> 6 kPa.....> 0 1 1,6 kPa.....> 2 2,5 kPa.....> 3 kPa.....> 4 0 6 kPa.....> 5 0 ... 10 kPa.....> 5 kPa.....> 8 -1,6 ... +1,6 kPa.....> 9 ... +2,5 kPa.....> 6

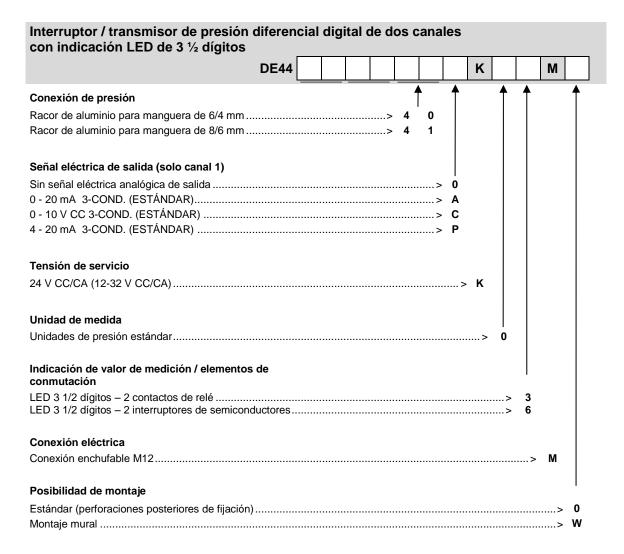
7

8

Interruptor / transmisor de presión diferencial digital de dos canales con indicación LED de 3 1/2 dígitos Κ **DE44** M Canal 2 - Rango de medición 0 ... 4 mbar> 2 0 mbar> 3 10 mbar> 0 16 mbar> 5 0 25 mbar> 6 0 40 mbar> 7 0 60 mbar> 8 0 ... 100 mbar> 9 -2,5 ... +2,5 mbar> 6 -4 ... +4 mbar> 7 -6 ... +6 mbar> 8 -10 ... +10 mbar> 9 -16 ... +16 mbar> 1 -25 ... +25 mbar> 2 -40 ... +40 mbar> -60 ... +60 mbar> 3 -100 ... +100 mbar> 7 0 ... 400 Pa.....> 0 ... Pa.....> 8 0 ... 1000 Pa.....> 9 0 ... 1600 Pa.....> 1 -250 ... +250 Pa.....> 0 ... kPa> 1 0 ... 1,6 kPa> ... 2,5 kPa> 3 ... kPa> kPa> ... kPa> ... -1 ... kPa> 8 9 -1,6 ... +1,6 kPa>

kPa>

-2,5 ... +2,5


-4 ...

...

6

7

13. 1 Accesorios

Número de pedido	Denominación	Cantidad de polos	Empleo	Longitud
06401993	Cable de conexión con acoplamiento M12	4 polos	para salidas de conmutación	2 m
06401994	Cable de conexión con acoplamiento M12	4 polos	para salidas de conmutación	5 m
06401995	Cable de conexión con acoplamiento M12	5 polos	para alimentación/señal	2 m
06401996	Cable de conexión con acoplamiento M12	5 polos	para alimentación/señal	5 m
EU03.F300	Adaptador para parametrización con software PC			

14 Certificación de conformidad

 ϵ

EU Declaration of Conformity

(Translation)

For the product described as follows

Product designation

Digital 2-channel differential pressure switch/ -transmitter with 3½-digit LED display

Type designation

DE44

it is hereby declared that it corresponds with the basic requirements specified in the following designated directives:

2014/30/EU EMC Directive
2011/65/EU RoHS Directive

The products were tested in compliance with the following standards.

Electromagnetic compatibility (EMC)

EN 61326-1:2013 Electrical equipment for measurement, control and laboratory use - EMC requirements -

Part 1: General requirements

EN 61326-2-3:2013 Electrical equipment for measurement, control and laboratory use - EMC requirements -

Part 2-3: Particular requirements - Test configuration, operational conditions and performance

criteria for transducers with integrated or remote signal conditioning

RoHS

EN 50581:2012 Technical documentation for the assessment of electrical and electronic products with respect to

the restriction of hazardous substances

Also they were subjected to the conformity assessment procedure "Internal production control".

Sole responsibility for the issue of this declaration of conformity in relation to fulfilment of the fundamental requirements and the production of the technical documents is with the manufacturer.

Manufacturer FISCHER Mess- und Regeltechnik GmbH

Bielefelder Str. 37a

32107 Bad Salzuflen, Germany

Tel. +49 5222 974 0

Documentation

Mr. T. Malischewski

representative B. S.

Development department

The devices bear the following marking:

 ϵ

Bad Salzuflen, 14 Nov 2018 ppa. F. Hempelmann Authorized signatory

