

Datenblatt

MS13

Digitaler Drucktransmitter/ -schalter mit Farbwechselanzeige

1 Produkt und Funktionsbeschreibung

1.1 Lieferumfang

- · MS13 Digitaler Drucktransmitter/ -schalter
- Betriebsanleitung

Das Gerät wird mit einer werkseitigen Standardparametrierung ausgeliefert. Zubehör siehe Liste im Abschnitt Bestellkennzeichen [▶ 10].

1.2 Leistungsmerkmale

Wesentliche Merkmale

- · LCD Farbwechselanzeige
- · Umschaltbare Druckeinheiten
- · 2 unabhängig Schaltpunkte mit vielen Einstelloptionen
- Analoger Signalausgang mit der Möglichkeit zur Kennlinienspreizung, Kennlinienumkehr und Offseteinstellung
- · Kennlinienumsetzung mittels Tabelle mit max. 30 Messpunkten
- Komplette Einstellung aller Parameter und Messstellenprotokoll mittels optionalen Transmitter PC Interface möglich.

Typische Anwendungen

- · Einfache Pumpensteuerungen
- Überwachung von Pumpen und Kompressoren
- Füllstandmessung

Einsatzgebiete

- Technische Gebäudeausrüstung (TGA)
- Verfahrenstechnik
- Prozesstechnik
- Umwelttechnik

1.3 Bestimmungsgemäßer Gebrauch

Der MS13 ist ein Drucktransmitter/ -schalter zur Relativdruckmessung. Das Gerät eignet sich zu Überwachung von Druck und Unterdruck bei nicht aggressiven gasförmigen und flüssigen Medien.

Der MS13 ist nach dem Stand der Technik betriebssicher gebaut und berücksichtigt die einschlägigen Vorschriften und EG-Richtlinien. Der Hersteller haftet nicht für Schäden, die durch unsachgemäßem oder nicht bestimmungsgemäßen Gebrauch entstehen.

Das Gerät ist unter Berücksichtigung aller relevanten Faktoren, die seine Sicherheit beeinflussen, entworfen worden. Außerdem ist das Gerät so gefertigt, überprüft und mit Benutzungsanweisungen ausgeliefert, dass, wenn es unter vorhersehbaren oder vernünftigerweise vorhersehbaren Bedingungen benutzt wird, seine Sicherheit während seiner vorgesehenen Lebensdauer gewährleistet ist.

1.4 Produktübersicht

Alle Geräte der Serie MS13 werden in einem NG100 Bajonettringgehäuse aus Edelstahl geliefert.

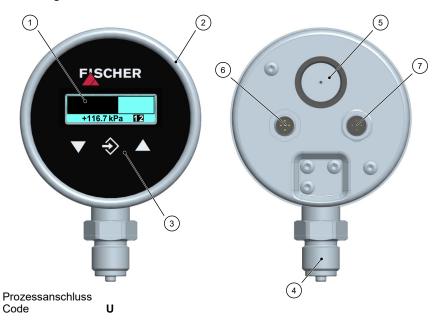


Abb. 1: Produktübersicht

1	Farbwechselanzeige	2	Bajonettringgehäuse
3	Tastatur	4	Prozessanschluss
5	Blowoutstopfen	6	M12 Stecker 1
7	M12 Stecker 2		

Prozessanschluss

Für den Prozessanschluss bestehen die folgenden Optionen.

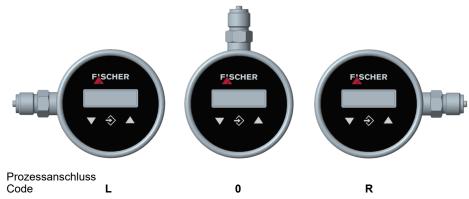


Abb. 2: Prozessanschluss Ausrichtung

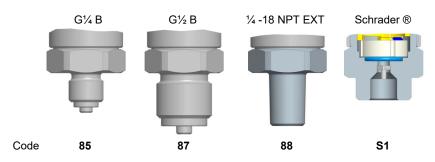


Abb. 3: Prozessanschlüsse

DB_DE_MS13 3 / 12

Code	Prozessanschluss
85	Anschlusszapfen mit Außengewinde G¼ B
87	Anschlusszapfen mit Außengewinde G½ B
88	Anschlusszapfen mit Außengewinde 1/4-18 NPT EXT
S1	Schrader® Verschraubung Innengewinde 7/16 UNF

Elektroanschluss

Der Elektroanschluss erfolgt mittels zweier M12 Steckverbinder.

M12 Flanschstecker DIN EN 61076-2-101 Codierung A			
Stecker 1	5 polig Ms-vernickelt		
Stecker 2	4 polig Ms-vernickelt		

1.5 Funktionsbild

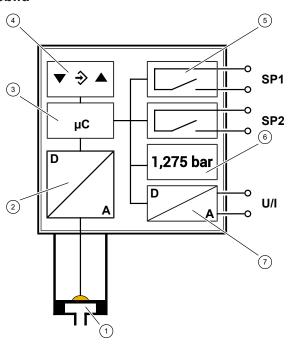


Abb. 4: Funktionsbild

1 Messzelle	2 A/D Wandler
3 Microcontroller	4 Tastatur
5 Schaltausgänge	6 LC-Farbwechselanzeige
7 D/A Wandler	

1.6 Aufbau und Wirkungsweise

Basis des Gerätes ist ein keramisches Sensorelement, das sich für Über- und Unterdruckmessungen eignet. Der einwirkende Druck verformt die Messmembran, wodurch eine Widerstandsänderung der aufgebrachten Messbrücke erfolgt. Diese Änderung wird durch die im Gerät integrierte Elektronik ausgewertet und in Anzeige, Schaltkontakte und ein standardisiertes analoges Ausgangssignal umgeformt.

Das Ausgangssignal kann gedämpft, gespreizt, invertiert und über eine Tabellenfunktion auch nichtlinear transformiert werden. Mit der LCD Farbwechselanzeige lassen sich Grenzwertüberschreitungen visualisieren.

Die Parametrierung des Gerätes erfolgt über die Tastatur oder mittels Fernparametrierung von einem PC aus.

4 / 12

2 Technische Daten

2.1 Allgemeines

Referenzbedingungen (nach IEC 61298-1)			
Temperatur	+15 +25 °C		
Relative Luftfeuchte	45 75 %		
Luftdruck	86 106 kPa	860 1060 mbar	
Einbaulage	beliebig		

2.2 Eingangskenngrößen

Relativdruck

Messbereich	Drucksicherheit		Kennliniena	Kennlinienabweichung	
	Überdruck	Berstdruck	Option	Standard	
0 +1,6 bar	4 bar	7 bar	0,5%FS	1,0 %FS	
0 +2,5 bar	10 bar	15 bar	0,5%FS	1,0 %FS	
0 +4 bar	10 bar	15 bar	0,5%FS	1,0 %FS	
0 +6 bar	20 bar	35 bar	0,5%FS	1,0 %FS	
0 +10 bar	40 bar	70 bar	0,5%FS	1,0 %FS	
0 +16 bar	40 bar	70 bar	0,5%FS	1,0 %FS	
0 +25 bar	100 bar	150 bar		1,0 %FS	
0 +40 bar	100 bar	150 bar		1,0 %FS	
0 +60 bar	200 bar	250 bar		1,0 %FS	

Vakuum und **±** Messbereiche

Messbereich	Drucksicher	heit	Kennliniena	bweichung
	Überdruck	Berstdruck	Option	Standard
01 bar	4 bar	7 bar		1,0 %FS
-1 0 bar	4 bar	7 bar		1,0 %FS
-1 +0,6 bar	4 bar	7 bar		1,0 %FS
-1 +1,5 bar	4 bar	7 bar		1,0 %FS
-1 +3 bar	10 bar	15 bar		1,0 %FS
-1 +5 bar	20 bar	35 bar		1,0 %FS
-1 +9 bar	40 bar	70 bar		1,0 %FS
-1 +15 bar	40 bar	70 bar		1,0 %FS
-1 +24 bar	100 bar	150 bar		1,0 %FS

2.3 Ausgangskenngrößen

Analogausgang

Ausgangssignal	Signalbereich	Bürde
020 mA	0,021,0 mA	$R_L \le 600 \Omega$
420 mA		
010 V	0,011,0 V	$R_L \ge 2 k\Omega$

Schaltausgänge

2 potentialfreie Relaiskontakte oder 2 potentialfreie Halbleiterschalter (MOSFET)

	Relais	MOSFET
progr. Schaltfunktion	Schließer (NO) Öffner (NC)	Einpoliger Einschalter (NO) Einpoliger Ausschalter (NC)
max. Schaltspannung	32 V AC/DC	332 V AC/DC
max. Schaltstrom	2 A	0,25 A
max. Schaltleistung	60 W (VA)	8 W / 8 VA R _{ON} ≤ 1 Ω

DB_DE_MS13 5 / 12

2.4 Messgenauigkeit

Nichtlinearität	Standard	< 1,0 %FS
	Option 1)	< 0,5 %FS
Hysterese		< 0,5 %FS
Kennlinienabweichung 2)	Standard	1,0 %
	Option 1)	0,5 %
Temperaturdrift	Nullpunkt	0,07 %FS/K
	Messbereich	0,05 %FS/K

¹⁾ nur für bestimmte Messbereiche möglich
²⁾ incl. Nichtlinearität und Hysterese

2.5 Hilfsenergie

Nennspannung	24 V AC/DC
Zul. Betriebsspannung	U _b = 1232 V DC U _b = 16,532 V AC
Elektrischer Anschluss	5 poliger M12 Rundsteckverbinder
Stromaufnahme	Typ. 2 W (2 VA) / Max. 3 W (3 VA)

2.6 Einsatzbedingungen

Umgebungsbedingungen

Umgebungstemperatur	-10 +70 °C
Medientemperatur	-10 +70 °C
Lagertemperatur	-20 +70 °C
Schutzart des Gehäuses	IP65 nach EN 60529
EMV	EN 61326-1:2013 EN 61326-2-3:2013
RoHS	EN 50581:2012

Werkstoffe der von der Umgebung berührten Teile			
Gehäuse	Edelstahl 1.43	Edelstahl 1.4301	
Bajonettring	Edelstahl 1.43	Edelstahl 1.4301	
Frontplatte	Aluminium		
Frontfolie	PET	Polyethylenterephthalat	
Bajonettring Dichtung	NBR	Nitrilkautschuk	
Blowoutstopfen	FKM	Fluorkarbon-Kautschuk	

Werkstoffe der vom Messmedium berührten Teile		
Prozessanschluss	Edelstahl 1.44	04
Messmembran	Keramik	
Dichtung	FKM	Fluorkarbon-Kautschuk

6 / 12 DB_DE_MS13

2.7 Anzeige- und Bedienoberfläche

Anzeige

4...6 stellige LCD, vollgrafisch, farbig hinterleuchtet

Programmierung

0,0100,0s (Sprungantwort 10/90%)
Ausschaltpunkt, Einschaltpunkt, Verzögerung (0 1800s), Funktion (Öffner/Schließer)
bar, PSI, kPa, "freie Einheit", Anfangswert, Endwert und Dezimalpunkt für "freie Einheit"
beliebig einstellbar innerhalb des Grundmessbereichs ⁽¹⁾
0⅓ des Grundmessbereichs (2)
± ¹ / ₃ des Grundmessbereichs ⁽³⁾
linear, radiziert, Tabelle mit 330 Stützpunkten
001 999 (000 = kein Passwortschutz)

- (1) Max. effektive Spreizung 4:1
- (2) Messwerte um Null werden zu Null gesetzt.
- (3) Zum Ausgleich bei unterschiedlichen Einbaulagen.

2.8 Konstruktiver Aufbau

2.8.1 Maßbild

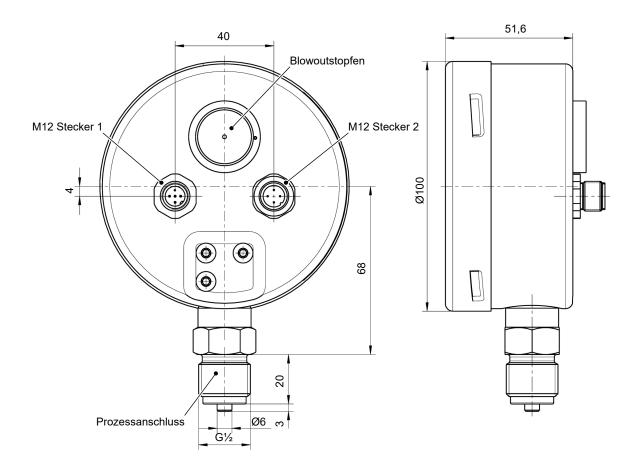
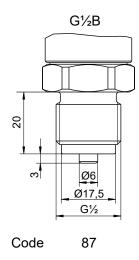



Abb. 5: Massbild

DB_DE_MS13 7 / 12

2.8.2 Prozessanschluss

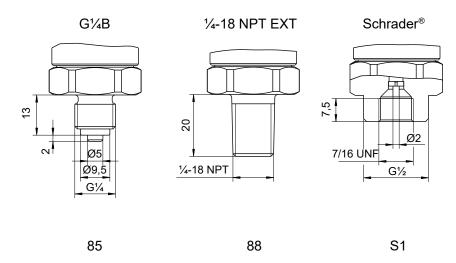


Abb. 6: Prozessanschluss

Anschluss		Werkstoff
G1⁄2 B	Anschlusszapfen mit Außengewinde	1.4404
G1/4 B	Anschlusszapfen mit Außengewinde	1.4404
1/4-18 NPT EXT	Anschlusszapfen mit Außengewinde	1.4404
7/16 UNF	Anschluss mit Innengewinde für Schrader® Verschraubung	1.4404

2.8.3 Elektrischer Anschluss

M12 Flanschstecker DIN EN 61076-2-101 Codierung A Stecker 1 5 polig Ms-vernickelt Stecker 2 4 polig Ms-vernickelt

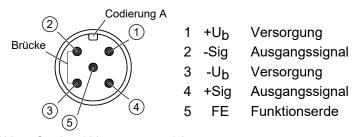


Abb. 7: Stecker 1 Versorgung und Ausgang

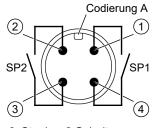
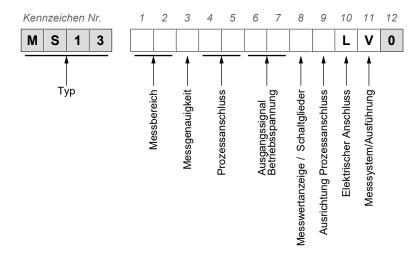



Abb. 8: Stecker 2 Schaltausgang

1 SP1 Schaltpunkt 1
2 SP2 Schaltpunkt 2
3 SP2 Schaltpunkt 2
4 SP1 Schaltpunkt 1

8 / 12

3 Bestellkennzeichen

[1,2]	Messbereich	umgerechnete Bereiche	
	[bar]	[kPa]	[PSI]
03	0 1,6 bar	0 160 kPa	0 23.21 PSI
04	0 2,5 bar	0 250 kPa	0 36.26 PSI
05	0 4 bar	0 400 kPa	0 58.01 PSI
06	0 6 bar	0 600 kPa	0 87.02 PSI
07	0 10 bar	0 1000 kPa	0 145.0 PSI
80	0 16 bar	0 1600 kPa	0 232.1 PSI
09	0 25 bar	0 2500 kPa	0 362.6 PSI
10	0 40 bar	0 4000 kPa	0 580.1 PSI
11	0 60 bar	0 6000 kPa	0 870.2 PSI
31	-1 0 bar	-100 0 kPa	-14.50 0 PSI
32	-1 0,6 bar	-100 60 kPa	-14.50 8.702 PSI
33	-1 1,5 bar	-100 150 kPa	-14.50 21.75 PSI
34	-1 3 bar	-100 300 kPa	-14.50 43.51 PSI
35	-1 5 bar	-100 500 kPa	-14.50 72.52 PSI
36	-1 9 bar	-100 900 kPa	-14.50 130.5 PSI
37	-1 15 bar	-100 15000 kPa	-14.50 217.5 PSI
38	-1 24 bar	-100 2400 kPa	-14.50 348.1 PSI
39	01 bar	0100 kPa	014.50 PSI

[3]	Messgenauigkeit
M	1,0 % Kennlinienabweichung
0	0,5 % Kennlinienabweichung

[4,5]	Prozessanschluss	Werkstoff
85	Anschlusszapfen mit Außengewinde G¼ B	
87	Anschlusszapfen mit Außengewinde G½ B	1.4404
88	Anschlusszapfen mit Außengewinde 1/4-18 NPT EXT	
S1	Schrader® Verschraubung Innengewinde 7/16 UNF	

DB_DE_MS13 9 / 12

[6,7]	Ausgangssignal	Betriebsspan- nung	
AL	0 20 mA	24 V AC/DC	Dreileiterausführung
PL	4 20 mA	24 V AC/DC	Dreileiterausführung
CL	0 10 V	24 V AC/DC	Dreileiterausführung

[8]	Messwertanzeige/Schaltglieder	
С	46 stellige Farbwechsel LCD	2 Relaiskontakte
D	46 stellige Farbwechsel LCD	2 Halbleiterschalter
[9]	Ausrichtung Prozessanschluss	
L	Anschluss links	
R	Anschluss rechts	
0	Anschluss oben	
U	Anschluss unten	

[10] Elektrischer Anschluss

L M12 Steckanschluss Ms-vernickelt

[11]	Messsyst	tem/Ausführung
V	FKM	Fluor-Kautschuk (VITON®)

3.1 Zubehör

Best. Nr.	Bezeichnung	Polzahl	Länge
06401993	Anschlusskabel für Schaltausgänge mit M12-Kupplung	4-pol	2 m
06401994	Anschlusskabel für Schaltausgänge mit M12 Kupplung	4-pol	5m
06401995	Anschlusskabel für Versorgung/Signal mit M12 Kupplung	5-pol	2 m
06401996	Anschlusskabel für Versorgung/Signal mit M12 Kupplung	5-pol	5 m

Zubehör nach Datenblatt MZ*)

MZ310#	Wandhalter nach DIN 16281
MZ1###	Wassersackrohre
MZ400#	Kapillardrosselspule
MZ5###	Manometer Absperrventil nach DIN 16270/16271
MZ6###	Manometer Absperrventil nach DIN 16272

Parametrieradapter*)

EU05 Transmitter PC Interface incl. PC-Software

10 / 12 DB_DE_MS13

^{*)} Ein Datenblatt bekommen Sie auf unserer Internetseite oder auf Anfrage.

3.2 Hinweise zum Dokument

Dieses Dokument liefert alle technischen Daten zum Gerät. Bei der Zusammenstellung der Texte und Abbildungen wurde mit größter Sorgfalt verfahren. Trotzdem können fehlerhafte Angaben nicht ausgeschlossen werden.

Technische Änderungen sind vorbehalten.

FISCHER Mess- und Regeltechnik GmbH

Bielefelder Str. 37a D-32107 Bad Salzuflen Tel +49 5222-974-0

Tel. +49 5222-974-0 Fax. +49 5222-7170

web : <u>www.fischermesstechnik.de</u> eMail : <u>info@fischermesstechnik.de</u>

DB_DE_MS13 11 / 12

12 / 12 DB_DE_MS13