developing solutions

Safety manual

NK10

Fill Level Limiter

09015141 • SHB_EN_NK10 • Rev. ST4-C • 08/22

Masthead

Manufacturer:	FISCHER Mess- und Regeltechnik GmbH		
	Bielefelderstr. 37a D-32107 Bad Salzuflen		
	Telephone: +49 5222 974 0 Telefax: +49 5222 7170		
	eMail: <u>info@fischermesstechnik.de</u> web: <u>www.fischermesstechnik.de</u>		
Technical editorial team:	Documentation representative: T. Malischewski Technical editor: R. Kleemann		
	All rights, also those to the translation, reserved. No part of this document may be reproduced or processed, duplicated or distributed using electronic systems or any other form (print, photocopy, microfilm or another process) without the written consent of the company FISCHER Mess- und Regeltechnik GmbH, Bad Salzuflen.		

Reproduction for internal use is expressly allowed.

Brand names and procedures are used for information purposes only and do not take the respective patent situation into account. Great care was taken when compiling the texts and illustrations; Nevertheless, errors cannot be ruled out. The company FISCHER Mess- und Regeltechnik GmbH will not accept any legal responsibility or liability for this.

Subject to technical amendments.

© FISCHER Mess- und Regeltechnik 2022

Version history

Rev. ST4-A 11/	18 Version 1	(first edition)
Rev. ST4-B 01/2	21 Version 2 (Correction	on scope of application: U no. omitted)
Rev. ST4-C 08/2	22 Version 3	(new SIL certification)

Table of contents

1	Scope and standards	4
	1.1 Standards	4
	1.2 Abbreviations	4
	1.3 Other applicable documents	5
2	Description of the Device and Field of Application	6
	2.1 Design and safety function	6
	2.2 Function diagram	6
3	Notes on Planning	7
	3.1 Wiring diagram for SIL applications	7
	3.2 Maintenance and Repeat Tests	8
	3.3 Safety coefficients	8
4	SIL Certificate	10
5	Attachments	12
	5.1 Glossary	12
	5.2 Failure rates	14
	5.3 Unit types	15
	5.4 Pictogram explanation	16

1 Scope and standards

This document applies to the fill level limiter series NK10.

These safety fill level limiters have been certified by TÜV as per IEC 61508 (Parts 1-2 and 4-7:2010) for SIL1 and SIL2 (SIL 3 for redundant circuitry).

1.1 Standards

Directives

Pressure Equipment Directive 2014/68/EC

Item of equipment for use in a safety chain as a whole piece of equipment with category IV safety function

Applicable EC Directive: Low-Voltage Directive 2014/35/EU

Standards and rules applied:

EN 61508 Functional safety of safety-related electrical/electronic/programmable electronic systems - (Parts 1-2 and 4-7)

EN 61511

Functional safety - safety systems for the process industry

EN 61010-1

Safety regulations for electrical measuring, control, regulating and laboratory devices - general requirements

DIN 4754-3

Heat transfer installations with organic heat transfer fluids - Part 3: Filling level safeguards

EN 13445-1

Unfuelled pressure container

1.2 Abbreviations

SIL (en: Safety Integrity Level) Safety Integrity Level

> The international standard IEC 61508 defines four discreet safety requirement levels (SIL 1 to SIL 4). Each level corresponds to a probability range for the failure of a safety function. The higher the level of the safety system is, the lower is the probability that it will fail to perform the required safety function.

- HFT (en: Hardware Failure Tolerance) Hardware Failure ToleranceAbility of a function unit to continue performing a particular function if
- faults or irregularities arise. **MTBF** (*en: Mean Time Between Failures*)

Mean operating duration between two failures.

MTTR (en: Mean Time To Repair)

Average time between the occurrence of a failure in a device or system and its repair.

PFD (en: Probability of Failure on Demand)

Probability of dangerous failures of a safety function on demand.

PFD_{AVG} (en: Average Probability of Failure on Demand) Average probability of dangerous failures of a safety function on demand.

DEU	(on: Probability Failure per Hour)		
FFN	Average probability of a dengarous failure per hour		
λ	(en: Lambda Safe)		
Λ _S			
λ	(on: Lambda Dangerous Detected failures)		
N _{DD}	(en. Lambua Dangerous Delected Tanules)		
	(on: Lombdo Dongorous, Undetected failures)		
Λ _{DU}			
DC	(on: Diagnostic Coverage)		
DC	(en: Diagnostic Coverage)		
	errors by means of tests.		
SFF	<i>(en: Safe Failure Fraction)</i> Safe Failure Fraction		
	Proportion of safe failures in the total number of possible failures that put the safety-related system in a dangerous or impermissible func- tional status.		
FIT	<i>(en: Failure In Time)</i> Failure In Time		
	Number of failures within 10 ⁹ hours.		
T1	(en: Test Interval)		
	Inspection intervals for the protective function.		
ΧοοΥ	<i>(en: X out of Y))</i> Selection Circuit:		
	Classification and description of safety-related systems with regard to redundancy and applied selection procedures.		
	 Indicates the frequency with which the safety function was en- gaged (redundancy). 		
	Y Determines the number of channels that must operate correctly.		
LDM	(en: Low Demand Mode)		
	Mode of operation in which the demand rate to the safety system is not greater than once annually and not greater than twice the fre- quency of the repeat test.		
HDM	(en: High Demand Mode)		
	Mode of operation in which the demand rate to the safety system is greater than once annually or greater than twice the frequency of the repeat test.		

1.3 Other applicable documents

Operating instructions and data sheets contain important safety instructions and technical data essential for safe operation.

The documents apply in the current version, which is available on the website <u>www.fischermesstechnik.de</u>.

Data sheet standard	09005238	DB_DE_NK10
Data sheet ATEX	09005535	DB_DE_NK10_H
Operating manual standard	09005016	BA_DE_NK10
Operating manual ATEX	09005110	BA_DE_NK10_H

2 Description of the Device and Field of Application

2.1 Design and safety function

The swim system of the fill level limiter is contained in the fluid-filled reservoir (expansion tank). The swimming motions generated by changes in the fill level are transmitted directly to a switch by a swimmer rod sealed in a stainless-steel bellows. The fulcrum of the swimmer rod is located outside of the pressure chamber.

There is a test button outside the pressure chamber with which a function check as per DIN 4754-3 can be made without lowering the fill level. When pressed, the body of the swimmer is moved against its buoyancy.

The factory default switching point of switch S1 (clamps 1, 2, 3) is set so that it switches when the swimmer rod is horizontal. The optional warning switch S2 switches ca. 2.5 mm before S1.

The safety function is defined as:

- 1. Safe switching when the set limit value is reached (switch S1)
- 2. Safe pre-warning when the set limit value is reached (switch S2) option

The switching contacts of the fill level limiter must be monitored by a suitable higher-order safety system as per IN EN 61508.

In a single-channel architecture (1001), devices up to SIL 2 can be used. In a multi-channel redundant architecture (1002), use up to SIL 3 is possible.

2.2 Function diagram

Fig. 1: Function diagram

- 1 Swimmer
- 3 Metal bellows
- 5 Switch lever
- 7 Cable screw connection
- 9 Welding socket

- 2 Swimmer rod
- 4 Test button
- 6 Micro-switch S1
- 8 Flange and counter-flange
- 10 Tank

3 Notes on Planning

The fill level limiters are intended for a mode of operation with a low demand rate up to SIL 2.

Use as a safety-relevant subsystem in a mode of operation with low or high demand rate is possible up to SIL 3 in a multi-channel, redundant architecture.

3.1 Wiring diagram for SIL applications

The switching contacts of the level limiter must be monitored by a suitable higher-order device as per EN 61508 in order to achieve the required diagnostic coverage (DC).

Fig. 2: Connection diagram SIL

3.2 Maintenance and Repeat Tests

Please also note the data in the attached operating instructions.

The PFD values given in the SIL manufacturer's declaration apply to inspection intervals of T1 = 1 year. The function test of the fill level limiter therefore needs to be carried out in the application every year.

CAUTION! Observe the system safety and operating regulations.

The instrument is maintenance-free. However, to ensure the device's reliable operation and long service life, we recommend regularly inspecting the device for the following points:

- Check the switching function (with the aid of the test button) in combination with the following components.
- Check the seal tightness of the flange connection.
- Check the electrical connections (cable clamp connection).

The test must be carried out once a year or more frequently depending on the operating regulations and must be documented in writing.

The exact test cycles need to be adapted to the operating and environmental conditions. If several components of the unit interact, all operating instructions of the other units also need to be observed.

All defective or faulty devices should be sent directly to our repair department. Please coordinate all shipments with our sales department. Return the device in the original packaging or a suitable transport container.

3.3 Safety coefficients

SIL 1/2 or SIL 3 can only be achieved with the level limiter NK10 (as sensor) in combination with a safety-related higher-order device (logic) as defined by EN 61508.

- The NK10 has no integrated diagnostics. If a diagnosis of the safety function is required, this must be provided by external measures as part of the overall safety-related system. The specified failure rates for DC=60% are guide values in connection with the evaluation logic and must be calculated for the specific system.
- The failure rates determined for the low demand mode can also be used for high demand mode applications up to a maximum demand rate of 12 times per year to calculate the PFH. Up to this requirement rate, no errors that can be traced back to wear and tear are expected.

$$PFH = \lambda_d$$

Dev. type	A
Operation mode	LDM (Low Demand Mode)
Hardware fault tolerance	HFT 0
Systematic capability	SC 3
Inspection intervals	T₁=1 year
Lifetime	10000 switching cycles or 15 years

Architecture 1001			
Diagnostic coverage	DC	0	60
Error rate	λ_{du}	3.13 * 10 ⁻⁷ 1/h (313 FIT)	1.25 * 10 ⁻⁷ 1/h (125 FIT)
Failure rate Low Demand Mode	PFD_{avg}	1.39 * 10 ⁻³	5.50 * 10-4
Failure rates High Demand Mode	PFH	3.13 * 10 ⁻⁷ 1/h	1.25 * 10 ⁻⁷ 1/h
Architecture 1002			
Diagnostic coverage	DC	0	60
Error rate	λ_{du}	3.13 * 10 ⁻⁷ 1/h (313 FIT)	1.25 * 10 ⁻⁷ 1/h (125 FIT)
Failure rate Low Demand Mode	PFD_{avg}	1.41 * 10 ⁻⁴	5.55 * 10 ⁻⁵
Failure rates High Demand Mode	PFH	3.20 * 10 ⁻⁸ 1/h	1.26 * 10 ⁻⁸ 1/h

4 SIL Certificate

Certificate	98.00/22	TŬV GE	Rheinland BRTIFIED SIL/PL Capability www.tuv.com ID 0600000000
Prüfgegenstand Product tested	Füllstandsbegrenzer Level Limiter	Zertifikats- inhaber Certificate holder	Fischer Mess- und Regelungstechnik GmbH Bielefelder Str. 37a 32107 Bad Salzuflen
Typbezeichnung Type designation	NK10 / NK10 H		Germany
Prüfgrundlagen Codes and standards	IEC 61508 Parts 1-2 and 4-7:2010		
Bestimmungsgemäße Verwendung Intended application	Sicherheitsfunktion 1: Sicheres Sch (Schalter S1) Sicherheitsfunktion 2: Sichere Vorv (Schalter S2) - Option Die Füllstandsbegrenzer sind zur V 2 geeignet. Unter Berücksichtigung von HFT = 1 können die Armaturen werden. Safety function 1: safe switching wi Safety function 2: safe pre-warning The level limiter are suitable for usse consideration of the minimum requi used in a redundant architecture up	halten bei Erreichen des varnung bei Erreichen d gerwendung in einem sic ger mindestens erforde in redundanter Ausfühn hen the set limit value is when the set limit value in a safety instrumente red hardware fault toler o to SIL 3.	e eingestellten Grenzwertes les eingestellten Grenzwertes scherheitsgerichteten System bis SIL erlichen Hardware-Fehlertoleranz rung auch bis SIL 3 eingesetzt reached (switch S1) e is reached (switch S2) - option. ed system up to SIL 2. Under ance HFT = 1 the valves may be
Besondere Bedingungen Specific requirements	Die Hinweise in der zugehörigen In Sicherheitshandbuchs sind zu beac The instructions of the associated I	stallations- und Betriebs chten. nstallation, Operating a	sanleitung sowie des nd Safety Manual shall be
Zusammenfassung der Testerge Summary of test results see page Der Ausstellung dieses Zertifil	considered. onisse siehe Seite 2 des Zertifikates. o 2 of this certificate. kates liegt eine Evaluierung entsprec	chend dem Zertifizieru	ingsprogramm
CERT FSP1 V1.0:2017 in der 08.08.2022 dokumentiert sind übereinstimmen. The issue of this certificate is CERT FSP1 V1.0:2017 in its a 2022-08-08. This certificate is	aktuellen Version zugrunde, deren E . Dieses Zertifikat ist nur gültig für Er pased upon an evaluation in accorda actual version, whose results are doo valid only for products, which are id	rgeonisse im Bericht rzeugnisse, die mit de ance with the Certifica cumented in Report N entical with the produ	ttion Program lo. 968/V 1298.00/22 dated ct tested.
	TÜV Rheinland Industrie Bereich Automa Funktionale Siche	Service GmbH ition erheit	Wol P
Köln, 2022-08-11	Certifical An Body Safety & Separity for	bi Betofriðlign & Grid	DiplIng. (FH) Wolf Rückwart
Köln, 2022-08-11 www.fs-products.co www.tuv.com	CertificatAmBdJy Salety & Securitish	stelle	Dipl. Ing. (FH) Wolf Rückwart

Fig. 3: 968_V_1298_00_22_de_en_el_page_1

10/222 12. 12 E A4

TÜV, TUEV and TUV are registered trademarks. Utilisation and application requires prior approval.

968/V 1298.00/22 - page 2

Holder: Fischer Mess- und Regeltechnik GmbH Bielefelder Straße 37a D-32107 Bad Salzuflen Germany Product tested: Level indicator / level limiter NK10 / NK10 H

Results of Assessment

Route of Assessment		2 _H / 1 _S
Type of Sub-system		Туре А
Mode of Operation		Low Demand Mode
Hardware Fault Tolerance	HFT	0
Systematic Capability		SC 3

Safe switching when the set limit value is reached (switch S1)					
Dangerous Failure Rate	λ _D	3.13 E-07 / h	313 FIT		
Average Probability of Failure on Demand 1oo1	$PFD_{avg}(T_1)$	1.39 E-0)3		
Average Probability of Failure on Demand 1oo2	$PFD_{avg}(T_1)$	1.41 E-0)4		

Safe prewarning when the set limit value is reached (switch S2) - option					
Dangerous Failure Rate	λ _D	3.13 E-07 / h	313 FIT		
Average Probability of Failure on Demand 1oo1	$PFD_{avg}(T_1)$	1.39 E-(03		
Average Probability of Failure on Demand 1oo2	$PFD_{avg}(T_1)$	1.41 E-()4		
Accumptions for the coloulations charge $DC = 0.07$ T = 4 upon MDT = 70 h 0.000 = 40.07					

Assumptions for the calculations above: DC = 0 %, T_1 = 1 year, MRT = 72 h, β_{1002} = 10 %

High Demand Mode

In the opinion of the testing laboratory, the failure rates determined for the low demand mode can also be used for high demand mode applications up to a maximum demand rate of $n_{op} = 12$ / a. No failures due to wear are to be expected.

Origin of failure rates

The stated failure rates for low demand are the result of an FMEDA with tailored failure rates for the design and manufacturing process.

Furthermore the results have been verified by qualification tests and field-feedback data.

Failure rates include failures that occur at a random point in time and are due to degradation mechanisms such as ageing.

The stated failure rates do not release the end-user from collecting and evaluating application-specific reliability data.

Periodic Tests and Maintenance

The given values require periodic tests and maintenance as described in the Safety Manual. The operator is responsible for the consideration of specific external conditions (e.g. ensuring of required quality of media, max. temperature, time of impact), and adequate test cycles.

TP-4800; Rev. 5.0 TÜV Rheinland Industrie Service GmbH, Am Grauen Stein, 51105 Köln / Germany

Fig. 4: 968_V_1298_00_22_de_en_el_page_2

	5	Attachments				
	5.1	5.1 Glossary				
Fig.(↓ ^A)		Definition				
β		(en) Common Cause Factor (de) Beta-Faktor				
		Proportionality factor between the CCF and the dangerous failure rate of the inc	rate (failure due to a common cause) lividual channel.			
DC		<i>(en)</i> Diagnostic Coverage Factor <i>(de)</i> Diagnosedeckungsgrad				
		The DC parameter shows the ratio of th ures (λ_{DD}) to the total number of danger	e number of detected dangerous fail- ous failures ($\lambda_{\rm D}$) an.			
		$DC = \sum_{n=1}^{\infty} Known dangerous error$	_ Σ λ _{DD}			
		$\sum -\sum$ Total dangerous error	$= \frac{1}{\sum \lambda_{D}}$			
FIT		<i>(en)</i> Failure in Time <i>(de)</i> Ausfälle pro Zeit				
		Failure rate with respect to the time interval 10 ⁹ hours.				
		1 FIT = 1 x 10 ⁻⁹ $\frac{1}{h}$				
FMEDA		(en) Failure Mode Effect and Diagnos (de) Gefährdung und Risikoanalyse	tic Analysis			
		Procedure to determine causes of failur	es and their impact on the system.			
HDM		<i>(en)</i> High Demand Mode <i>(de)</i> Betriebsart mit hoher Anforderungs	stufe			
		Operating mode with high or continuous mand rate to the safety system is greate	demand on the safety function. The de- er than once annually.			
HFT		<i>(en)</i> Hardware Fault Tolerance <i>(de)</i> Hardware-Fehlertoleranz				
		The hardware fault tolerance states how due to the architecture without endange	v many dangerous failures are possible ring the execution of the safety function.			
		 HFT = 0 The occurrence of a dangerous failu function. 	re will lead to a failure of the safety			
		 HFT = 1 Only the occurrence of two dangero safety function. 	us failures will lead to a failure of the			
LDM		<i>(en)</i> Low Demand Mode <i>(de)</i> Betriebsart mit niedriger Anforderu	ngsstufe			

	The safety function will only be carried out on demand to bring the system into a defined safe state. The frequency of requirements does not exceed one a year.
ΜοοΝ	(en) Architecture with M out of N channels (de) Systemarchitektur mit M aus N Kanälen
	System architecture MooN with the variables M and N:
	Classification and description of safety-related systems with regard to redund- ancy and applied selection procedures.
	 N - is the total number of redundant channels of a safety-related architec- ture and/or safety circuit.
	 M - determines the number of channels that must operate correctly to carry out the safety function.
MTBF	<i>(en)</i> Mean Time Between Failures <i>(de)</i> Mittlere Brauchbarkeitsdauer
	Mean operating duration between two failures.
MTTF _d	<i>(en)</i> Mean Time To Dangerous Failures <i>(de)</i> Mittlere Zeit bis zum gefahrbringenden Ausfall
	Operating duration up to a dangerous fault.
MRT	<i>(en)</i> Mean Repair Time <i>(de)</i> Mittlere Reparaturdauer
	Mean time for the repair.
MTTR	<i>(en)</i> Mean Time To Repair <i>(de)</i> Mittlere Instandsetzungszeit
	Average time between the occurrence of a failure and restoration of the system.
PFD	<i>(en)</i> Probability of Failure on Demand <i>(de)</i> Wahrscheinlichkeit einer Fehlfunktion im Anforderungsfall
	Probability of a dangerous failure on demand of the safety function for an oper- ating mode with a low demand rate.
PFH	(en) Probability of a dangerous Failure per Hour (de) Ausfallwahrscheinlichkeit pro Stunde für die Sicherheitsfunktion
	Frequency of a dangerous failure of the safety function for an operating mode with a high or continuous demand rate (high demand).
PFS	<i>(en)</i> Probability of Failure Spurious <i>(de)</i> Ausfallwahrscheinlichkeit aufgrund einer nicht beabsichtigten Prozessab- schaltung
	Frequency of failure due to a false alarm that leads to an unintentional process shutdown by the safety system. The smaller the value, the higher the system availability.
SC	<i>(en)</i> systematic capability <i>(de)</i> systematische Eignung

	Measure of confidence (expressed on a scale of SC 1 to SC 4) that an item's systematic safety integrity meets the requirements of the stated SIL for the de ignated item safety function when the item is specified in accordance with the compliant item safety manual for the item instructions is applied.
SFF	<i>(en)</i> Safe Failure Fraction <i>(de)</i> Anteil der ungefährlichen Ausfälle
	Resulting from the rate of safe errors plus the diagnosed or detected errors in relation to the system's total failure rate. ⁽¹⁾
SIF	(en) Safety Instrumented Function (de) Sicherheitstechnische Funktion
	The safety function (SIF) is a protective measure that is only activated in the event of an incident to prevent injuries, damage and pollution.
SIL	(en) Safety Integrity Level (de) Sicherheits-Integritätslevel
	One of four discrete levels to assess the requirements relating to the reliability of the safety functions in safety systems. SIL 4 is the highest and SIL 1 the lo est safety integrity level. Each level corresponds to a probability range for the failure of a safety function.
SIS	<i>(en)</i> Safety Instrumented System <i>(de)</i> Sicherheitstechnisches-System
	Safety system for performance of one or several safety functions. A system o this kind comprises at least a sensor, an overriding safety control system and an actuator.
T ₁	<i>(en)</i> Proof Test Interval <i>(de)</i> Prüfintervall
	The safety system must always be in a state that guarantees the defined safe integrity. The proof test is carried out to confirm this. The test interval states the intervals in which a proof test needs to be carried out to guarantee the safety function.
	5.2 Failure rates
	The error rates differ in principle as follows:

- 1. Safe failures
- 2. Dangerous failures
- 3. No effect failure

The first two types of errors are further divided into detectable and undetectable errors.

The failure without effect and the safe failures, whether detected or undetected, have no influence on the safety function. On the other hand, dangerous errors lead to a dangerous state of the system. The following diagram provides an overview.

⁽¹⁾ Due to the lack of diagnosis and negligible number of errors in mechanical components, the method can only be used to a limited extent for valves, drives and other mechanical components. It is therefore the responsibility of the end user to ensure an appropriate SFF through suitable diagnostic measures and intrinsically safe construction.

	Fig. 5. Failure rates
λ_{d}	Dangerous failure rate
λ_{dd}	Dangerous detected failure rate
λ_{du}	Dangerous undetected failure rate
λ_{s}	Safe failure rate
λ_{sd}	Safe detected failure rate
λ_{su}	Safe undetected failure rate
λ_{ne}	No effect failure rate

	5.3	Unit types
Туре А		Simple operating equipment
		Type A units are 'simple' units for which the failure behaviour of all parts used and the behaviour under failure conditions is completely known.
		This includes e.g. relays, resistors and transistors, however no complex elec- tronic parts, e.g. microcontrollers.
Туре В		Complex operating equipment
		Type B units are 'complex' units for which the failure behaviour of all parts used and the behaviour under failure conditions is not completely known.
		These units contain electronic parts such as microcontrollers, microprocessors or ASICs. In these parts and, in particular for software-controlled functions, it is difficult to fully determine all failures.

5.4 Pictogram explanation

▲ DANGER

Type and source of danger

This indicates a **direct** dangerous situation that could lead to death or **serious injury** (highest danger level).

1. Avoid danger by observing the valid safety regulations.

Type and source of danger

This indicates a **potentially** dangerous situation that could lead to death or **serious injury** (medium danger level).

1. Avoid danger by observing the valid safety regulations.

Type and source of danger

This indicates a **potentially** dangerous situation that could lead to slight or serious injury, damage or **environmental pollution** (low danger level).

1. Avoid danger by observing the valid safety regulations.

NOTICE

Note / advice

This indicates useful information of advice for efficient and smooth operation.

Notes

Notes

Notes

FISCHER Mess- und Regeltechnik GmbH

Bielefelder Str. 37a D-32107 Bad Salzuflen

Tel. +49 5222 974-0 Fax +49 5222 7170 www.fischermesstechnik.de info@fischermesstechnik.de